187 research outputs found

    PaperMaker: validation of biomedical scientific publications

    Get PDF
    Motivation: The automatic analysis of scientific literature can support authors in writing their manuscripts

    MedEvi: Retrieving textual evidence of relations between biomedical concepts from Medline

    Get PDF
    Summary: Search engines running on MEDLINE abstracts have been widely used by biologists to find publications that are related to their research. The existing search engines such as PubMed, however, have limitations when applied for the task of seeking textual evidence of relations between given concepts. The limitations are mainly due to the problem that the search engines do not effectively deal with multi-term queries which may imply semantic relations between the terms. To address this problem, we present MedEvi, a novel search engine that imposes positional restriction on occurrences matching multi-term queries, based on the observation that terms with semantic relations which are explicitly stated in text are not found too far from each other. MedEvi further identifies additional keywords of biological and statistical significance from local context of matching occurrences in order to help users reformulate their queries for better results

    Combining Evidence, Specificity, and Proximity towards the Normalization of Gene Ontology Terms in Text

    Get PDF
    Structured information provided by manual annotation of proteins with Gene Ontology concepts represents a high-quality reliable data source for the research community. However, a limited scope of proteins is annotated due to the amount of human resources required to fully annotate each individual gene product from the literature. We introduce a novel method for automatic identification of GO terms in natural language text. The method takes into consideration several features: (1) the evidence for a GO term given by the words occurring in text, (2) the proximity between the words, and (3) the specificity of the GO terms based on their information content. The method has been evaluated on the BioCreAtIvE corpus and has been compared to current state of the art methods. The precision reached 0.34 at a recall of 0.34 for the identified terms at rank 1. In our analysis, we observe that the identification of GO terms in the “cellular component†subbranch of GO is more accurate than for terms from the other two subbranches. This observation is explained by the average number of words forming the terminology over the different subbranches

    Integrating protein-protein interactions and text mining for protein function prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional annotation of proteins remains a challenging task. Currently the scientific literature serves as the main source for yet uncurated functional annotations, but curation work is slow and expensive. Automatic techniques that support this work are still lacking reliability. We developed a method to identify conserved protein interaction graphs and to predict missing protein functions from orthologs in these graphs. To enhance the precision of the results, we furthermore implemented a procedure that validates all predictions based on findings reported in the literature.</p> <p>Results</p> <p>Using this procedure, more than 80% of the GO annotations for proteins with highly conserved orthologs that are available in UniProtKb/Swiss-Prot could be verified automatically. For a subset of proteins we predicted new GO annotations that were not available in UniProtKb/Swiss-Prot. All predictions were correct (100% precision) according to the verifications from a trained curator.</p> <p>Conclusion</p> <p>Our method of integrating CCSs and literature mining is thus a highly reliable approach to predict GO annotations for weakly characterized proteins with orthologs.</p

    Exploring and linking biomedical resources through multidimensional semantic spaces

    Get PDF
    Background The semantic integration of biomedical resources is still a challenging issue which is required for effective information processing and data analysis. The availability of comprehensive knowledge resources such as biomedical ontologies and integrated thesauri greatly facilitates this integration effort by means of semantic annotation, which allows disparate data formats and contents to be expressed under a common semantic space. In this paper, we propose a multidimensional representation for such a semantic space, where dimensions regard the different perspectives in biomedical research (e.g., population, disease, anatomy and protein/genes). Results This paper presents a novel method for building multidimensional semantic spaces from semantically annotated biomedical data collections. This method consists of two main processes: knowledge and data normalization. The former one arranges the concepts provided by a reference knowledge resource (e.g., biomedical ontologies and thesauri) into a set of hierarchical dimensions for analysis purposes. The latter one reduces the annotation set associated to each collection item into a set of points of the multidimensional space. Additionally, we have developed a visual tool, called 3D-Browser, which implements OLAP-like operators over the generated multidimensional space. The method and the tool have been tested and evaluated in the context of the Health-e-Child (HeC) project. Automatic semantic annotation was applied to tag three collections of abstracts taken from PubMed, one for each target disease of the project, the Uniprot database, and the HeC patient record database. We adopted the UMLS Meta-thesaurus 2010AA as the reference knowledge resource. Conclusions Current knowledge resources and semantic-aware technology make possible the integration of biomedical resources. Such an integration is performed through semantic annotation of the intended biomedical data resources. This paper shows how these annotations can be exploited for integration, exploration, and analysis tasks. Results over a real scenario demonstrate the viability and usefulness of the approach, as well as the quality of the generated multidimensional semantic spaces

    Annotation of protein residues based on a literature analysis: cross-validation against UniProtKb

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A protein annotation database, such as the Universal Protein Resource knowledge base (UniProtKb), is a valuable resource for the validation and interpretation of predicted 3D structure patterns in proteins. Existing studies have focussed on point mutation extraction methods from biomedical literature which can be used to support the time consuming work of manual database curation. However, these methods were limited to point mutation extraction and do not extract features for the annotation of proteins at the residue level.</p> <p>Results</p> <p>This work introduces a system that identifies protein residues in MEDLINE abstracts and annotates them with features extracted from the context written in the surrounding text. MEDLINE abstract texts have been processed to identify protein mentions in combination with taxonomic species and protein residues (F1-measure 0.52). The identified protein-species-residue triplets have been validated and benchmarked against reference data resources (UniProtKb, average F1-measure of 0.54). Then, contextual features were extracted through shallow and deep parsing and the features have been classified into predefined categories (F1-measure ranges from 0.15 to 0.67). Furthermore, the feature sets have been aligned with annotation types in UniProtKb to assess the relevance of the annotations for ongoing curation projects. Altogether, the annotations have been assessed automatically and manually against reference data resources.</p> <p>Conclusion</p> <p>This work proposes a solution for the automatic extraction of functional annotation for protein residues from biomedical articles. The presented approach is an extension to other existing systems in that a wider range of residue entities are considered and that features of residues are extracted as annotations.</p
    corecore